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Abstract

Cogwheel phase cycles are often significantly shorter than traditional nested phase cycles. However, optimal solutions for

cogwheel cycles are often difficult to find. This paper presents techniques and conjectures which the authors have found useful for

generating cogwheel phase cycles either without the need for computer searches or with significantly smaller searches than would

otherwise be necessary. The conjectures presently lack proofs but have been tested successfully for a large number of cases.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

Cogwheel phase cycles [1] are frequently much

shorter than traditional ‘‘nested’’ phase cycles [2,3] but

are often more difficult to generate. Some optimum

cogwheel phase cycles can be predicted using cogwheel

selection diagrams but, in general, computer searches

must be used to find the shortest cogwheel phase cycle

which achieves a particular coherence pathway selec-
tivity. With savings in phase-cycle length of 34%

achieved for 3QMAS [1] and 85% achieved for the TOSS

experiment with 5p pulses [4], the benefits are clear, but

without relatively straightforward determination of op-

timal cycles, cogwheel phase cycling will always be dif-

ficult to implement. Computer programs have been

written for simulating the selectivity of phase cycles [5]

and for searching for suitable cogwheel phase cycles [6].
However, without a good estimate of the shortest pos-

sible length of the phase cycle, long search times may be

necessary.

To address this problem, we have looked for patterns

in the shortest lengths of cogwheel phase cycles for

different coherence pathway selection tasks. From these

patterns, we have developed predictive equations which,

in certain cases, allow the optimal cogwheel cycle to be
written down immediately. We are also able to identify
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the conditions under which this prediction fails. Even in
these cases, it is possible to place a reliable lower bound

on the length of the optimal cogwheel phase cycle, which

greatly improves the speed of numerical searches.
2. Coherence selection

An NMR experiment typically involves a sequence of
RF irradiation blocks, each of which induces coherence

transfers. The NMR signal is a superposition of com-

ponents, each of which has a different history of co-

herence orders. This history of orders is called the

coherence transfer pathway [2]. The relative phases of

RF irradiation elements are fixed within each RF block,

but the overall phases of the different RF blocks may be

varied with respect to each other. In phase cycling, the
overall phases are varied in a cyclic strategy so as to

select out signal components deriving from one or more

coherence transfer pathways, with other pathways sup-

pressed exactly.

Suppose that there are n RF blocks in the sequence,

numbered 1 to n. The interval before block l is denoted
fl�g, while the interval after block l is denoted flþg. By
definition

fl�g ¼ fðl� 1Þþg: ð1Þ
An individual coherence pathway is denoted

p ¼ fp0þ ; p1þ ; p2þ ; . . . ; pnþg: ð2Þ
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The change in coherence order occurring at block l may
be defined as

Dpl ¼ pðl�1Þþ � plþ : ð3Þ

The desired coherence pathways are denoted by the su-

perscripts 0; 00; 000, etc. This gives p0 ¼ fp00þ ; p01þ ; p02þ ; . . . ;
p0nþg, p0

0 ¼ fp000þ ; p0
0

1þ ; p
00
2þ ; . . . ; p

00
nþg, etc. The maximum co-

herence order possible in the interval between two RF

blocks is denoted pmax
lþ and theminimum is denoted pmin

lþ . It

is assumed that all coherence orders between pmin
lþ and pmax

lþ

need to be taken into account. In what follows, it is the

case that pmin
lþ ¼ �pmax

lþ . Examples can be envisaged in
which both of these conditions are relaxed.

A phase cycle will produce a number of transients

which are added to generate the final signal. For the

transient m, the phase of the RF block l is denoted /ðmÞ
l .

The accumulated phase for a particular coherence

pathway, p, and transient, m, is UmðpÞ, given by

UðmÞðpÞ ¼
Xn
l¼1

/ðmÞ
l Dpl þ /ðmÞ

sig ; ð4Þ

where /ðmÞ
sig is the signal phase shift, implemented either

by a RF phase shift of the receiver reference wave or by
post-digitization data processing (receiver imperfections

are ignored [4]). The selectivity of a phase cycle may be

summarized as

N�1
XN�1

m¼0

expf�iUðmÞðpÞg ¼ 1 if p 2 fp0; p00 ; . . .g;

¼ 0 otherwise; ð5Þ

where fp0; p00 ; . . .g is the set of desired coherence path-

ways and the sum is over all the transients in the phase

cycle. The necessary constructive and destructive inter-

ference for Eq. (5) to hold will be achieved if UðmÞðpÞ is
zero or an integer multiple of 2p for all transients only

when p is one of the desired coherence pathways, i.e.,

UðmÞðpÞ ¼ 2pZ if p 2 fp0; p00 ; . . .g;
6¼ 2pZ otherwise; ð6Þ

where Z is any integer.

In what follows, it is convenient to define every-

thing with respect to the intervals between the RF

blocks, rather than to the blocks themselves. The

difference between the phases of adjacent RF blocks
is notated

D/ðmÞ
lþ ¼ /ðmÞ

lþ1 � /ðmÞ
l : ð7Þ

The first coherence order, p0þ , can only be zero, whilst,

assuming a perfect receiver, the last, pnþ , can only be )1.
Therefore, Eqs. (3), (4), and (7) can be combined to give

UðmÞðpÞ ¼ �
Xn
l¼1

D/ðmÞ
lþ plþ ; ð8Þ

with the definition D/ðmÞ
nþ ¼ /ðmÞ

sig � /ðmÞ
n .
3. Nested phase cycling

In nested phase cycling, the phase of a particular RF

block is cycled whilst keeping the phase all other RF

blocks constant. The phase of a second block is then

incremented by one step in its cycle and the first cycle is

repeated. When the second cycle is completed, a third

cycle is begun, with the second and first cycles fully re-

peated. In this way, the selection of desired coherence
pathways is ensured for each part of the pulse sequence.

A sequence of two RF blocks has one coherence or-

der, p1þ , which may vary, since p0þ ¼ 0 and p2þ ¼ �1.

Selection of a particular value, p01þ , requires a phase

cycle, on either block, of length pmax
1þ þ 1þ jp01þ j, fol-

lowing the procedure of Bodenhausen et al. [2]. A se-

quence of three RF blocks has two variable coherence

orders and selection of a single pathway f0; p01þ ; p02þ ;�1g
requires a cycle of pmax

1þ þ 1þ jp01þ j steps on block 1 or 2

and a second cycle of pmax
2þ þ 1þ jp02þ j on block 2 or 3,

noting that these cycles cannot both be on block 2. This

method may be continued for sequences with any

number of RF blocks. Selection of p0lþ requires a cycle of

pmax
lþ þ 1þ jp0lþ j steps on either block l or block lþ 1.

Thus, the total cycle length for a single coherence order

pathway will be the product of the cycles corresponding
to each selected coherence order, given by

Nnest ¼
Yn�1

l¼1

pmax
lþ

�
þ 1þ p0lþ

�� ���; ð9Þ

where the product is over the n� 1 intervals between the

RF blocks in the experiment. If the cycle with length

pmax
lþ þ 1þ jp0lþ j is applied to the block l (i.e., the RF

block preceding the interval during which p0lþ is se-

lected), then the phase increment for block l, /inc
l , is

given by

/inc
l ¼ 2p

pmax
lþ þ 1þ jp0lþ j

: ð10Þ

The signal phase shift is given by

/ðmÞ
sig ¼ �

Xn
l¼1

/ðmÞ
l Dp0l ; ð11Þ

where Dp0l ¼ p0lþ � p0l�1þ . Inserting Eq. (11) into Eq. (4)

gives zero, ensuring that the pathway is selected, whilst
the choices of /inc

l ensure that no other coherence

pathways fulfil the selection in Eq. (5). As noted else-

where [7], this simple method can lead to phase cycles

with many redundant steps.
4. Cogwheel phase cycling

For cogwheel phase cycles, the phases of all the RF

blocks are cycled at the same time. The cogwheel phase

cycle is given by several parameters. There is the length

of the cycle, N , and there is the set of winding numbers
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for each RF block, denoted ml. These give the increment
in the phase of each RF block for successive transients

/inc
l ¼ 2pml

N
: ð12Þ

Because all phases are incremented together, the phase

of each RF block at each successive acquisition is given

by

/ðmÞ
l ¼ 2pml

N
m; ð13Þ

where m is the phase-cycle counter, taking values from 0
to N � 1. There is also a winding number for the signal

phase shift. This is referred to as the signal winding

number, msig, and is defined by

/ðmÞ
sig ¼ 2pmsig

N
m: ð14Þ

It is also convenient to define nomenclature for the

difference between winding numbers for successive RF

blocks. These are denoted Dmlþ and correspond to the
interval following block l. They are related to the

winding numbers by

Dmlþ ¼ mlþ1 � ml: ð15Þ
As with D/ðmÞ

nþ , the value of Dmnþ is defined as

Dmnþ ¼ msig � mn: ð16Þ
The nomenclature is summarized in Fig. 1. From Eq.

(8), the accumulated phase is therefore given by

UðmÞðpÞ ¼ � 2pm
N

Xn
l¼1

Dmlþplþ ; ð17Þ

with respect to the winding numbers.

Cogwheel phase cycles can be represented as

COGNðm1; m2; . . . ; mn; msigÞ. In what follows, predictions

will be presented for the optimal values of N and Dmlþ
which correspond to the shortest possible cogwheel
phase cycles. To convert from such a set of values to a

representation of the form COGNðm1; m2; . . . ; mn; msigÞ, the
following procedure can be used. First, decide upon a

value for m1, which can be anything (including zero).

From this starting point, the equation
Fig. 1. Nomenclature for coherence orders, phases, and winding numbers. A t

and ml pertain to the RF block l, whilst p0lþ and Dmlþ pertain to the interval
mlþ1 ¼ ml þ Dmlþ ; ð18Þ

can be used to generate the values of m2; m3; . . . ; mn. For
constructive interference of the signals, the value of

UðmÞðpÞ must satisfy Eq. (6). Setting all UðmÞðp0Þ to zero

allows Eq. (17) to be rearranged (noting that pnþ ¼ �1)

to give

Dmnþ ¼
Xn�1

l¼1

Dmlþplþ : ð19Þ

This expression can be combined with Eq. (16) to give

msig ¼ mn þ
Xn�1

l¼1

Dmlþplþ ; ð20Þ

which can be used to calculate msig.
5. Numerical searches

Unlike nested phase cycles, there do not exist simple

formulae, such as Eqs. (9) and (10), for the length and

phase increments of cogwheel phase cycles, hence the

reliance up to now on numerical searches. For a cycle
of length N there will be N � 1 possible values for each

winding number, running from 1 to N � 1. Because the

winding numbers relate to phases (Eq. (13)), this range

is equivalent to �N=2 to N=2� 1 for even N and

�ðN � 1Þ=2 to ðN � 1Þ=2 for odd N , with all zeroes

excluded. If there are n RF blocks, n� 1 blocks will

need to be phase cycled and the number of possible

combinations of winding numbers will therefore be
ðN � 1Þn�1. As a first step, we address the problem of

very large searches by looking for rules which tell us

which of the possible combinations of winding num-

bers will be equivalent, in order to reduce the search

area.

The accumulated phase for a particular coherence

pathway, p, and transient, m, in an experiment using a

cogwheel phase cycle is given by Eq. (17). If the pathway
is to be selected by the phase cycle, UðmÞðpÞ must fulfil

Eq. (6) for all values of m. Hence
hree-block pulse sequence is illustrated, i.e., n ¼ 3. The parameters /ðmÞ
l

following the RF block l.
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Xn
l¼1

Dmlþplþ ¼ ZN if p 2 fp0; p00 ; . . .g;

6¼ ZN otherwise; ð21Þ

where Z is any integer. This can be rewritten asXn
l¼1

Dmlþplþ

 !
modN ¼ 0 if p 2 fp0; p00 ; . . .g;

6¼ 0 otherwise: ð22Þ

This form of the selection rule has been found to be

the most amenable in computer searches for optimal

cogwheel phase cycles. From this selection rule, the

following points can be noted which limit the search

area and indicate coherence pathways which have re-
lated selectivities by cogwheel phase cycles.

1. The sign of all winding numbers may be reversed

without changing the selectivity of the phase cycle.

Thus, the value of one Dmlþ can be limited to the

range 1 to þN=2.
2. A cogwheel phase cycle based upon values fN ; cDm1þ ;

cDm2þ ; cDm3þ ; . . .g will have the same selectivity as one

based upon the values fN=d;Dm1þ ;Dm2þ ;Dm3þ ; . . .g,
where d is the greatest common denominator of N
and c. Thus, any phase cycle in which the values of

Dmlþ all share a common integer factormay be dropped

from the search, as they correspond to other phase cy-

cles with smaller winding numbers and, in when d 6¼ 1,

fewer transients.

3. The optimal cogwheel phase-cycle length for selecting

a single pathway is independent of the signs of the se-
lected coherence orders. A cycle which selects a given

single coherence pathway can be made selective for

another pathway which differs only in sign by chang-

ing the signs of the winding numbers Dmlþ corre-

sponding to those coherence orders which have

changed sign.

Point 1 stems from the fact that if xmodN ¼ 0,

�xmodN ¼ 0 as well and therefore, from Eq. (22), the
overall sign of the accumulated phase (and hence of

the winding numbers) is irrelevant. Point 2 stems from the

nature of the mod function. If cxmodN ¼ 0, then if d is

the greatest common denominator of c and N , xmodN=d
¼ 0, whilst if cymodN 6¼ 0, then ymodN=d 6¼ 0 as well.

Point 3 comes from the fact that by changing the sign of

both Dmlþ and plþ , nothing in the selection rule equation

changes. This last point removes the need for separate
calculation of phase cycles for different coherence order

pathways related by sign changes.

Taking these points into account still leaves a great

many possible phase cycles which must be tested for any

given cycle length, N . The first point reduces this num-

ber to 1
2
ððN � 1Þn�1Þ. The second point also reduces this

number significantly but, as the reduction depends upon

the factorization of the winding numbers (which is re-
lated to the distribution of prime numbers), this cannot
easily be calculated, although the reduction declines as
the number of RF blocks increases. Searching for opti-

mal cogwheel phase cycles can be very lengthy, even

with the reductions in search area mentioned above.

With this in mind, the following conjectures predicting

the cogwheel parameters are presented. They include a

starting value of N for numerical searches.
6. Predictive formulae

6.1. Selection of a single coherence pathway

We have examined the optimal N values for a large

number of cogwheel solutions, discovered by extensive

numerical searches. Starting with the case of n ¼ 3 (se-

lecting two coherence orders), then n ¼ 4 (selecting three
coherence orders), we have identified patterns which ei-

ther allow the optimal cogwheel cycle to be predicted

immediately or allow useful constraints to be placed on

numerical searches for the optimal cogwheel parameters.

From these patterns, we have constructed general pat-

terns for any value of n. Consider the following quantities:

Npred ¼ Qþ
Xn�1

l¼1

2Q p0lþ
�� ��
qlþ

� �
; ð23Þ

nlþ ¼ sgnðp0lþÞQ
qlþ

; l ¼ 1; 2; . . . ; n� 1; ð24Þ

where qlþ ¼ pmax
lþ þ 1� jp0lþ j and Q ¼

Qn�1

l¼1 qlþ . Our

predictions of optimal cogwheel cycles depend upon

whether the set of values nlþ do or do not all share a

common prime factor.

6.2. Category 1

The values nlþ do not all share a common prime

factor. In this case, the optimal cogwheel cycle has a

value of N given by

Nopt ¼ Npred: ð25Þ
In addition, the optimal cogwheel winding numbers are

given by

Dmoptlþ ¼ nlþ : ð26Þ

6.3. Category 2

The values nlþ do all share a common prime factor. In

this case, we are not able to predict the value of N for

the optimal cogwheel cycle directly. However, we have

always found that

Nopt PNpred: ð27Þ
This property allows numerical searches to be initiated

at Npred and proceed to higher values of N . We have



C.E. Hughes et al. / Journal of Magnetic Resonance 167 (2004) 259–265 263
usually found Nopt to be only slightly larger than Npred,
so that in most cases, the amount of numerical effort in

the search is greatly reduced. Numerical searches are

necessary to discover the optimal values of Dmlþ , in this

case.

6.4. Examples of cogwheel phase cycles selecting a single

coherence pathway

Table 1 compares values for the optimal cogwheel

phase cycle length Nopt (found by long numerical sear-

ches) with the value of Npred (Eq. (23)), for the selection

of a single coherence pathway of two selected coherence

orders in a spin system where pmax
1þ ¼ pmax

2þ ¼ 3. Only the

magnitude of the coherence order is important for the

optimal length. Category 1 cases are shown in non-italic

script, while Category 2 cases are shown in italics. This
table shows that Eqs. (25)–(27) apply to all the cases

shown and that even for Category 2 cases, the equality

in Eq. (27) applies much more often than the inequality.

In the table shown, the only case for which Nopt > Npred

involves the selection of the pathway {0, 2, 2, )1} (for

which Nopt ¼ 22 while Npred ¼ 20).

Table 2 compares the sets of optimal winding num-

bers Dmoptlþ (found by numerical searches) with the values
Table 1

Values of Nmin and Npred for the selection of a single pathway f0; p1þ ;
p2þ ;�1g with pmax

1þ ¼ pmax
2þ ¼ 3

Values in italics are cases which fall into Category 2, non-italics

indicate Category 1 cases.

Table 2

Values of fDmopt1þ ;Dmopt2þ g and fn1þ ; n2þg for the selection of a single

pathway f0; p1þ ; p2þ ;�1g with pmax
1þ ¼ pmax

2þ ¼ 3

Values in italics are cases for which the values of n1þ and n2þ share

a common prime factor and hence fall into Category 2, non-italics

indicate Category 1 cases.
nlþ given in Eq. (24), for the same pathway selections
given in Table 1. For all of the Category 1 cases, Dmoptlþ

and nlþ match exactly, as predicted by Eq. (26). For the

Category 2 cases, on the other hand, Dmoptlþ and nlþ do

not correspond. However, even in the Category 2 cases,

the constraint given by Eq. (27) allows the winding

numbers to be discovered by a relatively brief numerical

search.

Tables 1 and 2 are only small extracts from numerical
evaluations for more than 30,000 pathway selection

tasks, involving all possible single-pathway selections

with n ¼ 3 and 4 and with values of pmax
lþ up to 10. Some

cases with n > 4 have also been investigated. We did not

find a single case in conflict with Eqs. (25)–(27).

6.5. Selecting two coherence pathways, p0lþ ¼ �p0
0

lþ

It has been found that the case where p0lþ ¼ �p0
0

lþ for

all selected coherence orders (except, of course, the last

which is always )1) is closely related to the case of

selecting a single coherence pathway. Consider the

quantity

Npred ¼
Xn�1

l¼1

2Q p0lþ
�� ��
qlþ

� �
; ð28Þ

together with the values of nlþ from Eq. (24). Our pre-
dictions of optimal cogwheel cycles again depend upon

whether or not the set of nlþ values all share a common

prime factor. If they do not, the cycle falls into Category

1 stated above, using the definition of Npred given in Eq.

(28). If they do, the cycle falls into Category 2 and nu-

merical searches, starting at Npred, are required.
7. Examples

The split-t1 5Q3QMAS experiment [8] on spins I ¼ 5=2
consists of four RF blocks with selection of the coherence

pathway {0, +5, +3, +1, )1}. To select this coherence

pathway using nested phase cycling as described above

would require 693 steps (Eq. (9)). This can be done in

several ways. One would be to cycle the first RF block in
11 steps, selecting a change of +5, cycle the second in 9

steps, selecting a change of )2, and cycle the third in 7

steps, also selecting a change of )2. In fact, the original

implementation [8] used a 640 step phase cycle, already

illustrating the potential redundancy within nested phase

cycles. Eq. (23) can be used to predict the length of the

optimum cogwheel phase cycle. The values to be inserted

are fp01þ ; p02þ ; p03þg ¼ f5; 3; 1g, fq1þ ; q2þ ; q3þg ¼ f1; 3; 5g,
and Q ¼ 15. This gives a predicted phase-cycle length of

201. Furthermore, using the same values, Eqs. (24) and

(26) give values of fDmopt1þ ;Dmopt2þ ; Dmopt3þ g ¼ f15; 5; 3g. As

these do not share a common prime factor, a cogwheel

phase cycle based upon these values is predicted to be

selective for the desired coherence order selection. This



Fig. 2. (A) Schematic pulse sequence for a double-quantum spin echo

in the context of a solid-state MAS experiment, as described in the text.

The RF blocks are labelled 1–5. (B) Coherence selection pathway di-

agram for a double-quantum spin echo. Two pathways are selected.

(C) The cogwheel selection diagram for selecting these coherence

pathways. Starting from the left, the lines represent the accumulated

phase acquired by a pathway, given by Eq. (8). The two thick lines

represent the desired pathways and the barrier on the right has holes

separated by 36 units, allowing through only the desired pathways.
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may be confirmed by computer search. One such phase
cycle is COG201ð0; 15; 20; 23; 116Þ.

A variety of NMR experiments, including TOSS and

PASS, require the selection of coherence pathways con-

sisting of alternating +1 and )1 coherence orders whilst

assuming that no higher coherence orders may occur.

These require very long nested phase cycles. Cogwheel

phase cycles are, on the other hand,much shorter for these

cases [4]. Using the method discussed earlier would sug-
gest nested phase cycles of length 3k. In fact, it is possible

to only cycle every other RF block to within a nested

phase cycle. Thus, for an even number of conversions, k,
between +1 and )1 coherence orders, nested phase cycles

can be constructed with 5k=2 steps, whilst for a odd

number of conversions, nested phase cycles can be con-

structed with 3� 5ðk�1Þ=2 steps. From Eq. (23), the pre-

dicted length of a cogwheel phase cycle for such an
experiment is given by 2k þ 1. Eqs. (24) and (26) give

values of fDmpred1þ ;Dmpred2þ ; . . . ;Dmpredn�1þ ;Dm
pred
nþ g which alter-

nate between+1and)1.As these share noprime factors, a

cogwheel phase cycle based upon these values is predicted

to work successfully. This phase cycle can also be pre-

dicted using the diagrams discussed in [4]. These predic-

tions have been verified experimentally for k ¼ 5, where

the conversions between +1 and )1 coherence orders can
be selected with COG11ð0; 1; 0; 1; 0; 1; 6Þ.

A third example has also been successfully imple-

mented [9] to acquire a double-quantum spin echo in a

solid-state MAS experiment on 13C nuclei. The experi-

ment consists of five RF blocks, with selection of two

coherence pathways, {0, +2,)2, +2, 0,)1} and {0,)2, +2,
)2, 0, )1} in a system of two spins I ¼ 1=2, where the

maximumandminimumpossible coherences are assumed
to be � 2 throughout. Fig. 2A shows a schematic of the

pulse sequence. The first RF block is a sequence such as

SC14 [10] for the excitation of double-quantum coher-

ence. This is followed by two 180� pulses (blocks 2 and 3),

one placed in the middle of t1 and one at the end of t1. The
first refocuses chemical shifts whilst the second returns

the magnetization to the coherence orders it possessed at

the beginning of t1. The fourth RF block is again a se-
quence such as SC14 for the reconversion of double-

quantum coherence to longitudinal magnetization and

the fifth RF block is a 90� pulse to generate ()1)-quantum
coherence for detection in t2. Fig. 2B shows the coherence

transfer pathway diagram.

A nested phase cycle would take 1024 transients. In-

serting the values fp01þ ; p02þ ; p03þ ; p04þg ¼ fþ2;�2;þ2; 0g,
fq1þ ; q2þ ; q3þ ; q4þg ¼ f1; 1; 1; 3g, andQ ¼ 3 into Eqs. (24)
and (28) gives Npred ¼ 36 and fn1þ ; n2þ ; n3þ ; n4þg ¼
fþ3;�3;þ3;þ1g. Since the values of nlþ do not share a

common prime factor, a successful cogwheel phase can be

constructed with Nopt ¼ 36 and fDm1þ ;Dm2þ ;Dm3þ ;Dm4þg
¼ fþ3;�3;þ3;þ1g. One such phase cycle is

COG36ð0; 3; 0; 3; 4; 22Þ. This has the same selectivity as

the nested phase cycle in just 3.5% the number of tran-
sients. Fig. 2C shows the cogwheel selection diagram for
this phase cycle, including the values of Dmlþ .
8. Conclusions

The predictions set out in this paper have been tested
extensively. In some predictable situations, these rules

lead immediately to the optimal cogwheel winding

numbers. In other cases, the rules greatly reduce the time

needed to discover the optimal cycle by numerical

searches. However, they lack proofs. Attempts have

been made and continue to be made in order to under-

stand the origin of these equations.
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